Термическое сопротивление дверей первых этажей. Входные металлические двери с терморазрывом. Расчет теплоустойчивости наружных ограждений в теплый период

В одной из прошлых статей мы обсуждали композитные двери и вскользь затронули блоки с терморазрывом. Теперь посвящаем им отдельную публикацию, так как это довольно интересные изделия, можно сказать - уже отдельная ниша в дверестроении. К сожалению, в этом сегменте не всё однозначно, есть достижения, есть фарс. Сейчас наша задача разобраться в особенностях новой технологии, понять, где заканчиваются технологические «плюшки», и где начинаются маркетинговые игры.

Чтобы понять, как работают терморазделённые двери, и какие из них можно считать таковыми - придётся вникать в детали и даже немного вспомнить школьную физику.

Если Вы еще не определись с выбором, посмотрите наши предложения

  1. Это природный процесс стремления к равновесию. Он заключается в обмене/переносе энергии между телами с разной температурой.
  2. Что интересно, более нагретые тела отдают энергию более холодным.
  3. Естественно, при такой отдаче, более тёплые детали остывают.
  4. Вещества и материалы с неодинаковой интенсивностью передают тепло.
  5. В определении коэффициента теплопроводности (обозначается в) рассчитывается, сколько тепла пройдёт через образец заданного размера, при заданной температуре за секунду. То есть, в прикладных вопросах важен будет площадь и толщина детали, а также характеристики вещества, из которого она изготовлена. Некоторые показатели для наглядности:
    • алюминий - 202 (Вт/(м*К))
    • сталь- 47
    • вода - 0,6
    • минеральная вата - 0,35
    • воздух - 0,26

Теплопроводность в строительстве и для металлической двери в частности

Все ограждающие строительные конструкции передают тепло. Поэтому в наших широтах теплопотери в жилище есть всегда, и обязательно применяется отопление для их восполнения. Окна и двери, установленные в проёмах, имеют несоизмеримо меньшую толщину, чем стены, вот из-за этого здесь обычно на порядок больше тепловых потерь, чем через стены. Плюс повышенная теплопроводность металлов.

Как выглядят проблемы.

Естественно, больше всего страдают двери, которые установлены на входе в здание. Но не на всех, а только если изнутри и снаружи температура отличается сильно. Например, общая подъездная дверь зимой всегда целиком холодная, нет особых неприятностей со стальными дверями для квартиры , ведь в подъезде теплее, чем на улице. А вот дверные блоки коттеджей работают на границе температур - они нуждаются в особой защите.

Очевидно, что, дабы исключить или уменьшить теплопередачу, нужно искусственно уровнять внутреннюю и «забортную» температуру. По сути, создаётся воздушная большая прослойка. Традиционно тут идут тремя путями:

  • Дают двери промёрзнуть, устанавливая второй дверной блок изнутри. Воздух отопления не пробивается к входной двери, и нет резкого перепада температур - нет конденсатов.
  • Делают дверь всегда прогретой, то есть возводят снаружи тамбур без отопления. Он выравнивает температуру на внешней поверхности двери, а отопление прогревает внутренние её слои.
  • Иногда помогает организация воздушной тепловой завесы, электрического подогрева полотна или тёплого пола возле входной двери.

Конечно, сама стальная дверь должна быть максимальным образом утеплена. Это касается как полостей коробки и полотна, так и откосов. Вдобавок к полостям, на сопротивление теплообмену работают облицовки (чем толще и «пушистее» - тем лучше).

Технология терморазрыва

Извечная мечта разработчика навсегда и бесповоротно победить теплопередачу. Неудобства заключаются в том, что самые тёплые материалы, как правило, самые хрупкие и слабонесущие, из-за того что сопротивление теплопередаче сильно зависит от плотности. Чтобы усилить пористые материалы (в которых находятся газы) их нужно соединять с более прочными слоями - так появляются сэндвичи.

Однако, дверной блок - это самонесущая пространственная конструкция, что не может существовать без каркаса. И тут появляются другие неприятные моменты, которые называются «мостиками холода». Это значит, что, как бы хорошо ни была утеплена входная дверь из стали, есть элементы, проходящие дверь насквозь. Это: стенки коробки, периметр полотна, рёбра жёсткости, замочно-скобяные изделия - и всё это из металла.

В один прекрасный момент производители алюминиевых конструкций нашли решение некоторых актуальных вопросов. Один из самых теплопроводных материалов (алюминиевые сплавы) решили разделить менее теплопроводным материалом. Многокамерный профиль примерно пополам «разрезали» и сделали там полимерную вставку («термомост»). Чтобы несущая способность особо не пострадала, применили новый и довольно дорогой материал - полиамид (часто в комбинации со стекловолокном).

Основной идеей подобных конструктивных решений является повышение изоляционных свойств, уход от создания дополнительных дверных блоков и тамбуров.

Недавно на рынке появились качественные входные двери с термическим разделением, собранные из импортных профилей. Они выполнены по схожей технологии, что и «тёплые» алюминиевые системы. Только несущий профиль создаётся из стального проката. Конечно, тут нет экструзии - всё производится на гибочном оборудовании. Конфигурация профиля очень сложная, для установки термомоста сделаны специальные пазы. Устроено всё таким образом, чтобы полиамидная деталь с Н-образным сечением становилась вдоль линии полотна и соединяла обе половинки профиля. Сборка изделий выполняется давлением (прокатка), соединение металла и полиамида может проклеиваться.

Из таких профилей собирают силовой каркас полотна, стойки и перемычки рамы, а также порог. Естественно, существуют некоторые отличия в конфигурации сечения: ребро жёсткости может представлять собой простой квадрат, а чтобы обеспечить четверть или наплыв полотна на притвор - чуть сложнее. Обшивка силового каркаса производится по традиционной схеме, только с листами металла с обеих сторон. От глазка часто отказываются.

Кстати, есть интересная система, когда полотно на полимерных гарпунах (с эластичными уплотнителями) буквально полностью набирается из профиля с терморазрывом. Его стенки заменяют листы обшивки.

Естественно, появились на рынке и «весёлые» двери, которые нещадно эксплуатируют понятие терморазрыв. В лучшем случае, производится некоторый тюнинг обычной стальной двери.

  1. Прежде всего, производители убирают рёбра жёсткости. Сразу возникают проблемы с пространственной жёсткостью полотна, устойчивостью на прогиб, «килечное» вскрытие обшивки и т.п. В качестве выхода - к металлическим листам обшивки иногда прикрепляют недоразвитые рёбра жёсткости. Часть из них фиксируются на наружном листе, другая часть - на внутреннем. Дабы хоть как-то стабилизировать конструкцию, полость заливают пеной, которая одновременно выполняет формообразующую функцию и склеивает оба листа между собой. Есть модели, где в пену вкладывают металлическую сетку/решётку, чтобы злоумышленник не мог вырезать сквозную дыру в полотне.
  2. Крайние торцевые грани полотна и коробки даже могут иметь небольшие разделяющие вставки, правда, с неизвестными характеристиками.В общем, вся конструкция мало чем отличается от обычных китайских дверей. Имеем просто тонкую оболочку, только заполненную пеной.

Другой финт - это взять обычную дверь с рёбрами (учитывая хитрый подход к делу - как правило, низкосортную) и вставить в полотно вату и в дополнение - слой, например, пенопласта. После этого изделию присваивается звание «сэндвич с терморазрывом» и оно быстренько продаётся как инновационная модель. По такому принципу все стальные дверные блоки можно записать в эту категорию, ведь утеплитель и декоративная отделка существенно снижают теплопотери.

Требуемое общее сопротивление теплопередаче для наружных дверей (кроме балконных) должно быть не менее значения 0,6
для стен зданий и сооружений, определяемого при расчетной зимней температуре наружного воздуха, равной средней температуре наиболее холодной пятидневки обеспеченностью 0,92 .

Принимаем фактическое общее сопротивление теплопередаче наружных дверей
=
, тогда фактическое сопротивление теплопередаче наружных дверей
, (м 2 ·С)/Вт,

, (18)

где t в, t н, n, Δt н, α в – то же, что и в уравнении (1).

Коэффициент теплопередачи наружных дверей k дв, Вт/(м 2 ·С), вычисляют по уравнению:

.

Пример 6. Теплотехнический расчет наружных ограждений

Исходные данные.

    Здание жилое, t в = 20С.

    Значения теплотехнических характеристик и коэффициентов t хп(0,92) = -29С (приложение А);

α в = 8,7 Вт/(м 2 ·С) (таблица 8); Δt н = 4С (таблица 6).

Порядок расчета.

Определяем фактическое сопротивление теплопередаче наружной двери
по уравнению (18):

(м 2 ·С)/Вт.

Коэффициент теплопередачи наружной двери k дв определяем по формуле:

Вт/(м 2 ·С).

2 Расчет теплоустойчивости наружных ограждений в теплый период

Проверка наружных ограждений на теплоустойчивость осуществляется в районах со среднемесячной температурой воздуха в июле 21С и выше. Установлено, что колебания температуры наружного воздуха А t н, С, происходят циклически, подчиняются закону синусоиды (рисунок 6) и вызывают, в свою очередь, колебания фактической температуры на внутренней поверхности ограждения
, которые также протекают гармонически по закону синусоиды (рисунок 7).

Теплоустойчивость – это свойство ограждения сохранять относительное постоянство температуры на внутренней поверхности τ в, С, при колебаниях внешних тепловых воздействий
, С, и обеспечивать комфортные условия в помещении. По мере удаления от наружной поверхности амплитуда колебаний температуры в толще ограждения, А τ , С, уменьшается, главным образом, в толще слоя, ближайшего к наружному воздуху. Этот слой толщиной δ рк, м, называется слоем резких колебаний температуры А τ , С.

Рисунок 6 – Колебания тепловых потоков и температур на поверхности ограждения

Рисунок 7 – Затухание температурных колебаний в ограждении

Проверку на теплоустойчивость осуществляют для горизонтальных (покрытия) и вертикальных (стены) ограждений. Вначале устанавливают допустимую (требуемую) амплитуду колебаний температуры внутренней поверхности
наружных ограждений с учётом санитарно-гигиенических требований по выражению:

, (19)

где t нл − среднемесячная температура наружного воздуха за июль (летний месяц), С, .

Эти колебания происходят вследствие колебаний расчетных температур наружного воздуха
,С, определяемых по формуле:

где А t н − максимальная амплитуда суточных колебаний наружного воздуха за июль, С, ;

ρ − коэффициент поглощения солнечной радиации материалом наружной поверхности (таблица 14);

I max , I ср − соответственно максимальное и среднее значения суммарной солнечной радиации (прямой и рассеянной), Вт/м 3 , принимаемые:

а) для наружных стен − как для вертикальных поверхностей западной ориентации ;

б) для покрытий − как для горизонтальной поверхности ;

α н − коэффициент теплопередачи наружной поверхности ограждения при летних условиях, Вт/(м 2 ·С), равный

где υ − максимальная из средних скоростей ветра за июль, но не менее 1 м/с .

Таблица 14 – Коэффициент поглощения солнечной радиации ρ

Материал наружной поверхности ограждения

Коэффициент  поглощения ρ

Защитный слой рулонной кровли из светлого гравия

Кирпич глиняный красный

Кирпич силикатный

Облицовка природным камнем (белым)

Штукатурка известковая темно-серая

Штукатурка цементная светло-голубая

Штукатурка цементная темно-зеленая

Штукатурка цементная кремовая

Величина фактических колебаний на внутренней плоскости
,С, будет зависеть от свойств материала, характеризуемых значениями D, S, R, Y, α н и способствующих затуханию амплитуды  колебаний температуры в толще ограждения А t . Коэффициент затухания определяют по формуле:

где D − тепловая инерция ограждающей конструкции, определяемая по формуле ΣD i = ΣR i ·S i ;

e = 2,718 − основание натурального логарифма;

S 1 , S 2 , …, S n − расчётные коэффициенты теплоусвоения материала отдельных слоев ограждения (приложение А, таблица А.3) или таблица 4;

α н – коэффициент теплоотдачи наружной поверхности ограждения, Вт/(м 2 ·С), определяется по формуле (21);

Y 1 , Y 2 ,…, Y n − коэффициент теплоусвоения материала наружной поверхности отдельных слоев ограждения, определяемый по формулам (23 ÷ 26).

,

где δ i – толщина отдельных слоев ограждающей конструкции, м;

λ i – коэффициент теплопроводности отдельных слоев ограждающей конструкции, Вт/(м·С) (приложение А, таблица А.2).

Коэффициент теплоусвоения наружной поверхности Y, Вт/(м 2 ·С), отдельного слоя зависит от значения его тепловой инерции и определяется при расчёте, начиная с первого слоя от внутренней поверхности помещения – к наружной.

Если первый слой имеет D i ≥1, то коэффициент теплоусвоения наружной поверхности слоя Y 1 следует принимать

Y 1 = S 1 . (23)

Если первый слой имеет D i < 1, то коэффициент теплоусвоения наружной поверхности слоя следует определить расчетом для всех слоев ограждающей конструкции, начиная с первого слоя:

для первого слоя
; (24)

для второго слоя
; (25)

для n-го слоя
, (26)

где R 1 , R 2 ,…, R n – термическое сопротивления 1, 2 и n-го слоев ограждения, (м 2 ·С)/Вт, определяемое по формуле
;

α в – коэффициент теплоотдачи внутренней поверхности ограждения, Вт/(м 2 ·С) (таблица 8);

По известным значениям и
определяют фактическую амплитуду колебаний температуры внутренней поверхности ограждающей конструкции
,C,

. (27)

Ограждающая конструкция будет отвечать требованиям теплоустойчивости, если выполняется условие

(28)

В этом случае ограждающая конструкция обеспечивает комфортные условия помещения, защищая от воздействия внешних колебаний теплоты. Если
, то ограждающая конструкция является нетеплоустойчивой, тогда необходимо принять для наружных слоев (ближе к наружному воздуху) материал с большим коэффициентом теплоусвоения S, Вт/(м 2 ·С).

Пример 7. Расчет теплоустойчивости наружного ограждения

Исходные данные.

    Ограждающая конструкция, состоящая из трех слоев: штукатурки из цементно-песчаного раствора с объемной массой γ 1 = 1800 кг/м 3 , толщиной δ 1 = 0,04 м, λ 1 = 0,76 Вт/(м·С); слоя утеплителя из глиняного обыкновенного кирпича γ 2 = 1800 кг/м 3 , толщиной δ 2 = 0,510 м, λ 2 = 0,76 Вт/(м·С); облицовочного силикатного кирпича γ 3 = 1800 кг/м 3 , толщиной δ 3 = 0,125 м, λ 3 = 0,76 Вт/(м·С).

    Район строительства – г. Пенза.

    Расчетная температура внутреннего воздуха t в = 18 С.

    Влажностный режим помещения – нормальный.

    Условие эксплуатации – А.

    Расчетные значения теплотехнических характеристик и коэффициентов в формулах:

t нл = 19,8С ;

R 1 = 0,04/0,76 = 0,05 (м 2 ·°С)/Вт;

R 2 = 0,51/0,7 = 0,73 (м 2 ·°С)/Вт;

R 3 = 0,125/0,76 = 0,16 (м 2 ·°С)/Вт;

S 1 = 9,60 Вт/(м 2 ·°С); S 2 = 9,20 Вт/(м 2 ·°С);

S 3 = 9,77 Вт/(м 2 ·°С); (приложение А, таблица А.2);

V = 3,9 м/с ;

А t н = 18,4 С ;

I max = 607 Вт/м 2 , , I ср = 174 Вт/м 2 ;

ρ= 0,6 (таблица 14);

D = R i · S i = 0,05·9,6+0,73·9,20+0,16·9,77 = 8,75;

α в = 8,7 Вт/(м 2 ·°С) (таблица 8),

Порядок расчета.

1. Определяем допустимую амплитуду колебаний температуры внутренней поверхности
наружного ограждения по уравнению (19):

2. Вычисляем расчетную амплитуду колебаний температуры наружного воздуха
по формуле (20):

где α н определяем по уравнению (21):

Вт/(м 2 ·С).

3. В зависимости от тепловой инерции ограждающей конструкции D i = R i ·S i = 0,05 · 9,6 = 0,48 <1, находим коэффициент теплоусвоения наружной поверхности для каждого слоя по формулам  (24 – 26):

Вт/(м 2 ·°С).

Вт/(м 2 ·°С).

Вт/(м 2 ·°С).

4. Определяем коэффициент затухания расчетной амплитуды колебания наружного воздуха V в толще ограждения по формуле (22):

5. Вычисляем фактическую амплитуду колебаний температуры внутренней поверхности ограждающей конструкции
, С.

Если выполняется условие, формула (28), конструкция отвечает требованиям теплоустойчивости.

Теплоизоляция (теплозащита)

Теплоизоляция - одна из основных функций окна, которая обеспечивает комфортные условия внутри помещения.
Тепловые потери помещения определяются двумя факторами:

  • Трансмиссионными потерями , которые складываются из потоков тепла, которое помещение отдает через стены, окна, двери, потолок и пол.
  • Вентиляционными потерями , под которыми понимается количество тепла, необходимое для нагрева до температуры помещения холодного воздуха, проникающего через негерметичности окна и в результате вентиляции.

В России для оценки теплозащитных характеристик конструкций принято сопротивление теплопередаче R o (м²· °C/Вт) , величина, обратная коэффициенту теплопроводности k , который принят в нормах DIN.

Коэффициент теплопроводности k характеризует количество тепла в ваттах (Вт), которое проходит через 1м² конструкции при разности температур по обе стороны в один градус по шкале Кельвина (К), единица измерения Вт/м² К. Чем меньше значение k , тем меньше теплопередача через конструкцию, т.е. выше ее изоляционные свойства.

К сожалению, простой пересчет k в R o (k=1/R o) не вполне корректен из-за различия методик измерений в России и других странах. Однако, если продукция сертифицирована, то производитель обязан представить заказчику именно показатель сопротивления теплопередаче.

Основными факторами влияющими на значение приведенного сопротивления теплопередаче окна являются:

  • размер окна (в т.ч. отношение площади остекления к площади оконного блока);
  • поперечное сечение рамы и створки;
  • материал оконного блока;
  • тип остекления (в т.ч. ширина дистанционной рамки стеклопакета, наличие селективного стекла и специального газа в стеклопакете);
  • количество и местоположение уплотнителей в системе рама/створка.

От значения показателей R o зависит и температура поверхности ограждающей конструкции, обращенная во внутрь помещения. При большой разнице температур происходит излучение тепла в сторону холодной поверхности.

Плохие теплозащитные свойства окон неизбежно приводят к появлению холодного излучения в зоне окон и возможности появления конденсата на самих окнах или в зоне их примыкания к другим конструкциям. Причем это может происходить не только, в следствие, низкого сопротивления теплопередачи конструкции окна, но также и плохого уплотнения стыков рамы и створки.

Сопротивление теплопередаче ограждающих конструкций нормируется СНиП II-3-79* "Строительная теплотехника", который является переизданием СНиП II-3-79 "Строительная теплотехника" с изменениями, утвержденными и введенными в действие с 1 июля 1989 г. постановлением Госстроя СССР от 12 декабря 1985 г. 241, изменением 3, введенным в действие с 1 сентября 1995 г. постановлением Минстроя России от 11 августа 1995 г. 18-81 и изменением 4, утвержденным постановлением Госстроя России от 19 января 1998 г. 18-8 и введенным в действие 1 марта 1998 г.

В соответствии с этим документом, при проектировании приведенное сопротивление теплопередаче окон и балконных дверей R o следует принимать не менее требуемых значений, R o тр (см. таблицу 1).

Таблица 1. Приведенное сопротивление теплопередаче окон и балконных дверей

Здания и сооружения Градусо-сутки отопительного периода, °C сут Приведенное сопротивление теплопередаче окон и балконных дверей не менее R отр , м²· °C/Вт
Жилые, лечебно-профилактические и детские учреждения, школы, интернаты 2000
4000
6000
8000
10000
12000
0,30
0,45
0,60
0,70
0,75
0,80
Общественные, кроме указанных выше, административные и бытовые, за исключением помещений с влажностным или мокрым режимом 2000
4000
6000
8000
10000
12000
0,30
0,40
0,50
0,60
0,70
0,80
Производственные с сухим и нормальным режимом 2000
4000
6000
8000
10000
12000
0,25
0,30
0,35
0,40
0,45
0,50
Примечание:
1. Промежуточные значения R отр следует определять интерполяцией
2. Нормы сопротивления теплопередаче светопрозрачных ограждающих конструкций для помещений производственных зданий с влажностным или мокрым режимом, с избытками явного тепла от 23 Вт/м 3 , а также для помещений общественных, административных и бытовых зданий с влажностным или мокрым режимом следует принимать как для помещений с сухим и нормальным режимами производственных зданий.
3. Приведенное сопротивление теплопередаче глухой части балконных дверей должно быть не менее, чем в 1,5 раза выше сопротивления теплопередаче светопрозрачной части этих изделий.
4. В отдельных обоснованных случаях, связанных с конкретными конструктивными решениями заполнения оконных и других проемов, допускается применять конструкции окон, балконных дверей и фонарей с приведенным сопротивлением теплопередаче на 5% ниже устанавливаемого в таблице.

Градусо-сутки отопительного периода (ГСОП) следует определять по формуле:

ГСОП = (t в - t от.пер.) · z от.пер.

где
t в - расчетная температура внутреннего воздуха, °C (согласно ГОСТ 12.1.005-88 и нормам проектирования соответствующих зданий и сооружений);
t от.пер. - средняя температура периода со средней суточной температурой воздуха ниже или равной 8°C; °C;
z от.пер. - продолжительность периода со средней суточной температурой воздуха ниже или равной 8°C, Сут (по СНиП 2.01.01-82 "Строительная климатология и геофизика").

По СНиП 2.08.01-89* при расчете ограждающих конструкций жилых зданий следует принимать: температуру внутреннего воздуха 18 °C в районах с температурой наиболее холодной пятидневки (определяемой согласно СНиП 2.01.01-82) выше -31°C и 20°C при -31°C и ниже; относительную влажность воздуха равной 55 %.

Таблица 2. Температура наружного воздуха (выборочно, полностью см. СНиП 2.01.01-82)

Город Температура наружного воздуха, °С
Наиболее холодной пятидневки Период со средней суточной температурой воздуха
≤8°С
0,98 0,92 Продолжительность, сут. Средняя температура, °С

Владивосток

Волгоград

Красноярск

Краснодар

Мурманск

Новгород

Новосибирск

Оренбург

Ростов-на-Дону

Санкт-Петербург

Ставрополь

Хабаровск

Челябинск

Для облегчения работы проектировщиков в СНиП II-3-79* , в приложении приведена также справочная таблица, содержащая приведенные сопротивления теплопередаче окон, балконных дверей и фонарей для различных конструкций. Пользоваться этими данными необходимо в том случае, если значения R отсутствуют в стандартах или технических условиях на конструкции. (см. примечание к табл. 3)

Таблица 3. Приведенное сопротивление теплопередаче окон, балконных дверей и фонарей (справочное)

Заполнение светового проема Приведенное сопротивление теплопередаче R о, м² ·°С/Вт
в деревянных или ПВХ переплетах в алюминиевых переплетах

1. Двойное остекление в спаренных переплетах

2. Двойное остекление в раздельных переплетах

0,34*

3. Блоки стеклянные пустотные (с шириной швов 6 мм) размером, мм:
194х194х98
244х244х98

0,31 (без переплета)
0,33 (без переплета)

4. Профильное стекло коробчатого сечения

0,31 (без переплета)

5. Двойное из органического стекла для зенитных фонарей

6. Тройное из органического стекла для зенитных фонарей

7. Тройное остекление в раздельно-спаренных переплетах

8. Однокамерный стеклопакет из стекла:

Обычного

9. Двухкамерный стеклопакет из стекла:

Обычного (с межстекольным расстоянием 6 мм)

Обычного (с межстекольным расстоянием 12 мм)

С твердым селективным покрытием

С мягким селективным покрытием

10. Обычное стекло и однокамерный стеклопакет в раздельных переплетах из стекла:

Обычного

С твердым селективным покрытием

С мягким селективным покрытием

С твердым селективным покрытием и заполненным аргоном

11. Обычное стекло и двухкамерный стеклопакет в раздельных переплетах из стекла:

Обычного

С твердым селективным покрытием

С мягким селективным покрытием

С твердым селективным покрытием и заполненным аргоном

12. Два однокамерных стеклопакета в спаренных переплетах

13. Два однокамерных стеклопакета в раздельных переплетах

14. Четырехслойное остекление в двух спаренных переплетах

* В стальных переплетах

Примечания:
1. К мягким селективным покрытиям стекла относят покрытия с тепловой эмиссией менее 0,15, к твердым - более 0,15.
2. Значения приведенных сопротивлений теплопередаче заполнений световых проемов даны для случаев, когда отношение площади остекления к площади заполнения светового проема равно 0,75.
3. Значения приведенных сопротивлений теплопередаче, указанные в таблице, допускается применять в качестве расчетных при отсутствии этих значений в стандартах или технических условиях на конструкции или не подтвержденных результатами испытаний.
4. Температура внутренней поверхности конструктивных элементов окон зданий (кроме производственных) должна быть не ниже 3°С при расчетной температуре наружного воздуха.

Кроме общероссийских нормативных документов существуют еще и местные, в которых определенные требования для данного региона могут быть ужесточены.

Например, согласно Московским городским строительным нормам МГСН 2.01-94 "Энергоснабжение в зданиях. Нормативы по теплозащите, тепловодоэлектроснабжению.", приведенное сопротивление теплопередаче (R o) должно быть не менее 0,55 м²·°C/Вт для окон и балконных дверей (допускается 0,48 м²·°C/Вт в случае применения стеклопакетов с теплоотражающими покрытиями).

В этом же документе содержатся и другие уточнения. Для улучшения теплозащиты заполнений светопроемов в холодный и переходный периоды года без увеличения числа слоев остекления следует предусматривать применение стекол с селективным покрытием, размещая их с теплой стороны. Все притворы рам окон и балконных дверей должны содержать уплотнительные прокладки из силиконовых материалов или морозостойкой резины.

Говоря о теплоизоляции необходимо помнить, что летом окна должны выполнять противоположную зимним условиям функцию: защищать помещение от проникновения солнечного тепла в более прохладное помещение.

Следует также принимать во внимание, что жалюзи, ставни и т.п. работают как временные теплозащитные устройства и существенно уменьшают теплопередачу через окна.

Таблица 4. Коэффициенты теплопропускания солнцезащитных устройств
(СНиП II-3-79*, приложение 8)

Солнцезащитные устройства

Коэффициент теплопропускания
солнцезащитных устройств β сз


А. Наружные
  1. Штора или маркиза из светлой ткани
  2. Штора или маркиза из темной ткани
  3. Ставни-жалюзи с деревянными пластинами
Б. Межстекольные (непроветриваемые)
  1. Шторы-жалюзи с металлическими пластинами
  2. Штора из светлой ткани
  3. Штора из темной ткани
В. Внутренние
  1. Шторы-жалюзи с металлическими пластинами
  2. Штора из светлой ткани
  3. Штора из темной ткани

0,15
0,20
0,10/0,15
0,15/0,20

Примечание:
1. Коэффициенты теплопропускания даны дробью: до черты - для солнцезащитных устройств с пластинами под углом 45°, после черты - под углом 90° к плоскости проема.
2. Коэффициенты теплопропускания межстекольных солнцезащитных устройств с проветриваемым межстекольным пространством следует принимать в 2 раза меньше.

Общая схема порядка проектирования тепловой защиты зданий требуемая в соответствии со схемой 1 , представлена на рисунке 2.1.

где R req , R min – нормируемое и минимальное значение сопротивления теплопередаче, м 2 ×°С/Вт;

, нормативныйирасчетный удельный расход тепловой энергии на отопление зданий за отопительный период, кДж/(м 2 ·°С·сут) или кДж/(м ·°С·сут).





способ “б”способ “а”


Изменение проекта


НЕТ

ДА

где R int , R ext - сопротивление теплообмену на внутренней и наружной поверхностях ограждения, (м 2 ·К)/Вт;

R к - термическое сопротивление слоев ограждающей конструкции, (м 2 ×К)/Вт;

R пр – приведенное термическое сопротивление неоднородной конструкции (конструкции, имеющей теплопроводные включения), (м 2 ·К)/Вт;

a int , a ext – коэффициенты теплоотдачи на внутренней и наружной поверхностях ограждения, Вт/(м 2 ·К), принимаются соответственно по табл. 7 и табл. 8 ;

d i – толщина слоя ограждающей конструкции, м;

l i – коэффициент теплопроводности материала слоя, Вт/(м 2 ·К).

Так как теплопроводность материалов в значительной степени зависит от их влажности, определяют условия их эксплуатации. По приложению «В» устанавливается зона влажности на территории страны, затем по табл. 2 в зависимости от влажностного режима помещения и зоны влажности определяются условия эксплуатации ограждающей конструкции А или Б. Если влажностный режим помещения не указан, то допускается принимать его нормальным. Затем по приложению «Д» в зависимости от установленных условий эксплуатации (А или Б) определяется коэффициент теплопроводности материала (см. приложение «Е») .



Если в состав ограждения входят конструкции с неоднородными включениями (панели перекрытия с воздушными прослойками, крупные блоки с теплопроводными включениями и т.д.), то расчет таких конструкций производится по особым методикам. Данные методики представлены в приложениях «М», «Н», «П» . В курсовом проекте в качестве таких конструкций выступают панели перекрытия пола первого этажа и потолка последнего, их приведенное термическое сопротивление определяется следующим образом.

А). Плоскостями, параллельными тепловому потоку, панель разбивается на однородные и неоднородные по составу участки (рис. 2.2, а ). Одинаковым по составу и по размерам участкам присваивается одна и та же цифра. Общее сопротивление панели перекрытия будет равняться усреднённому сопротивлению. Из-за своих размеров участки оказывают неодинаковое влияние на общее сопротивление конструкции. Поэтому термическое сопротивление панели рассчитывается с учетом площадей, занимаемых участками в горизонтальной плоскости, по формуле:

где l ж.б – коэффициент теплопроводности железобетона, принимаемый в зависимости от условий эксплуатации А или Б;

R a . g . ─ термическое сопротивление замкнутой воздушной прослойки, принимаемое по табл. 7 при положительной температуре воздуха в прослойке, (м 2 ·К)/Вт.

Но полученное термическое сопротивление панели перекрытия не совпадает с данными лабораторного эксперимента, поэтому производят вторую часть расчета.



Б). Плоскостями, перпендикулярными направлению теплового потока, конструкция также разбивается на однородные и неоднородные слои, которые принято обозначать заглавными буквами русского алфавита (рис.2.2, б ). Общее термическое сопротивление панели в этом случае:

где – термическое сопротивление слоев «А», (м 2 ·К)/Вт;

R Б – термическое сопротивление слоя «Б», (м 2 ·К)/Вт.

При расчете R Б необходимо учесть различную степень влияния участков на термическое сопротивления слоя из-за их размеров:

Усреднение расчётов можно следующим образом: расчеты в обоих случаях не совпадают с данными лабораторного эксперимента, которые находятся ближе к значению R 2 .

Расчет панели перекрытия необходимо произвести дважды: для случая, когда тепловой поток направлен снизу вверх (перекрытие) и сверху вниз (пол).

Сопротивление теплопередаче наружных дверей может быть принято по табл. 2.3, окон и балконных дверей – по табл. 2.2 настоящего пособия