Все о моторе фольксваген поло. Продлеваем ресурс двигателя Volkswagen Polo седан. Все, что нужно знать. Конструктивные особенности мотора

Автомобили Volkswagen Polo седан с 2010 по 2015 год включительно оборудовались поперечным бензиновым четырехцилиндровым 16-клапанным двигателем CFNA (рабочий объем 1,6 л). Расположение цилиндров – вертикальное рядное.

Отличительной от других двигателей особенностью является цепной привод механизма управления клапанами. Для удобства все элементы защищены пластиковыми корпусами, крышками. Особенно важные детали выделены цветами.
Очень легко контролировать уровень охлаждающей жидкости двигателя – все элементы сделаны прозрачными, чтобы не затруднять вариант контроля.

Расход топлива (бензина): 6,5 л на механике и около 7 л с коробкой автомата.

Блок цилиндров изготовлен из специального легкого сплава алюминия. Блок состоит из цилиндра, пятиопорного коленчатого вала, верхней части картера и рубашки охлаждения. На блоке цилиндров сделаны специальные фланцы, приливы и каналы главной масляной магистрали, а также отверстия для крепления деталей, узлов и агрегатов. В блоке находятся тонкостенные чугунные гильзы. Пять постелей коренных подшипников обработаны в сборе с блоком и расположены в его нижней части.

Головка блока цилиндров двигателя является единой отливкой из алюминиевого сплава, в которую запрессованы седла и направляющие втулки клапанов. На противоположных сторонах головки находятся впускные и выпускные каналы. Поршни также изготовлены из алюминиевого сплава. На цилиндрической поверхности головки поршня расположены кольцевые канавки для колец двух компрессионных и маслосъемного. Поршни дополнительно охлаждаются маслом, которое поступает через отверстие в верхней головке шатуна и разбрызгивается на днище поршня.

Поршневые пальцы плавающего типа выполнены с зазором в бобышках поршней и в верхних головках шатунов, Пальцы зафиксированы от осевого смещения стопорными кольцами.

Шатуны стальные, кованые, со стержнем двутаврового сечения нижними головками соединены с шатунными шейками коленчатого вала через тонкостенные вкладыши.

Распределительные валы чугунные, литые, установлены в корпусе, прикрепленном болтами к головке блока. На распределительном валу впускных клапанов находится задающее кольцо датчика положения распределительного вала.

Коленчатый вал вращается в коренных подшипниках, где находятся тонкостенные стальные вкладыши с антифрикционным слоем. Коленчатый вал двигателя закреплен от осевых перемещений двумя полукольцами, вставленными в проточки постели среднего коренного подшипника.

Маховик из чугуна закреплен на заднем конце коленчатого вала шестью болтами через прижимную пластину. Для пуска двигателя стартером на маховик напрессован зубчатый обод. На автомобилях с автоматической коробкой передач вместо маховика установлен ведущий диск гидротрансформатора.

Система вентиляции картера герметичного типа не сталкивается непосредственно с внешней средой. Одновременно с отсосом газов в картере образуется разрежение на всех режимах работы двигателя. Это увеличивает прочность различных уплотнений двигателя и уменьшает загрязнение атмосферы токсичными выбросами.

Система состоит из двух ветвей – большой и малой. Шланг большой ветви подсоединен к штуцеру на крышке головки блока. Клапан системы вентиляции картера двигателя установлен в корпусе воздушного фильтра.
При холостой работе двигателя и в режимах низких нагрузок, когда разрежение во впускной трубе велико, картерные газы через маслоотделитель по малой ветви системы всасываются впускной трубой.

В режимах полных нагрузок при открытой на большой угол дроссельной заслонке разрежение во впускной трубе снижается, а в воздушном фильтре возрастает. Картерные газы через шланг большой ветви и клапан системы вентиляции поступают в воздушный фильтр, а затем через дроссельный узел попадают во впускную трубу и цилиндры двигателя. Клапан открывается в зависимости от разрежения в трубе и таким образом регулирует поток картерных газов.

Силовой агрегат представляет собой двигатель с коробкой передач, сцепление и главную передачу. Он установлен на трех опорах с эластичными резиновыми элементами. Два верхних боковых (правой и левой) берут на себя основной вес силового агрегата. Задняя нижняя компенсирует крутящий момент от трансмиссии и нагрузки, возникающие при трогании автомобиля с места, разгоне и торможении.

Система питания двигателя состоит из фильтра грубой очистки топлива в модуле топливного насоса, фильтра тонкой очистки топлива на кронштейне топливного бака, электрического топливного насоса в топливном баке, дроссельного узла, регулятора давления топлива, форсунок и топливопроводов, а также включает в себя воздушный фильтр.
Система зажигания двигателя микропроцессорная, состоит из катушек и свечей зажигания. Катушками зажигания управляет электронный блок (контроллер) системы управления двигателем. Система зажигания при эксплуатации не требует обслуживания и регулировки.

Система охлаждения двигателя закрытая, с расширительным бачком, состоит из рубашки охлаждения, выполненной в литье, которая окружает цилиндры в блоке, камеры сгорания и газовые каналы в головке блока цилиндров. Принудительную циркуляцию охлаждающей жидкости обеспечивает центробежный водяной насос с приводом от коленчатого вала поликлиновым ремнем, одновременно приводящим генератор. Термостат установлен для обеспечения нормальной рабочей температуры охлаждающей жидкости в системе охлаждения. При непрогретом двигателе и низкой температуре охлаждающей жидкости термостат перекрывает большой круг системы.

Система выпуска отработавших газов

Отработавшие газы отводятся из двигателя через выпускной коллектор, соединенный c каталитическим нейтрализатором (катколлектор). Далее газы поступают в приемную трубу, объединенную в общий узел с дополнительным глушителем, из которой они проходят в промежуточную трубу, объединенную с основным глушителем.
Элементы системы выпуска отработавших газов подвешены к кузову на пяти резиновых подушках.

Стальной термоэкран над катколлектором установлен для защиты двигателя и основания кузова от нагрева элементами системы. Помимо этого термоэкраны закрывают сверху приемную трубу, дополнительный глушитель и промежуточную трубу.

Система выпуска отработавших газов не требует специального обслуживания. Достаточно время от времени проверять надежность затяжки резьбовых соединений и целость подушек подвески. Если появились повреждения, сквозная коррозия или прогар элементов системы, то все заменяют в сборе, так как глушители вместе с трубами являются неразборными узла.

Система улавливания паров топлива

Благодаря системе улавливания паров топлива в атмосферу не допускается выброс паров топлива, что благоприятно влияет на экологию внешней среды, т.к. в системе происходит поглощение паров угольным адсорбером.
Угольный адсорбер расположен в нише правого заднего колеса и соединен топливо-проводами с электромагнитным клапаном продувки адсорбера и топливным баком.

Электромагнитный клапан продувки адсорбера находится в моторном отсеке на корпусе впускной трубы и по сигналам блока управления двигателем переключает режимы работы системы.

Пары топлива из топливного бака по топливопроводу постоянно отводятся и собираются в адсорбере, заполненном активированным углем (адсорбентом). Во время работы двигателя происходит периодическое обновление адсорбента продувкой адсорбера свежим воздухом. Разрежение при открывании клапана продувки передается по трубопроводу из впускного коллектора в полость адсорбера, в систему поступает воздух. Электронный блок управления двигателем контролирует интенсивность продувки адсорбера в зависимости от режима работы двигателя, подавая на клапан сигнал с изменяемой частотой импульса.

Пары топлива из адсорбера по трубопроводу поступают во впускную трубу двигателя и сгорают в цилиндрах.
Если система улавливания паров топлива неисправна, то возникает нестабильность холостого хода вплоть до остановки двигателя. Ходовые качества автомобиля ухудшаются, повышается токсичность отработавших газов.

Система смазки CFNA и CFNB

Система смазки комбинированная: наиболее нагруженные детали смазываются под давлением, а остальные или разбрызгиванием масла, вытекающего из зазоров между соединенными деталями, или направленным разбрызгиванием. Масляный насос выполнен с внутренним трохоидальным зацеплением шестерен и установлен внутри масляного картера и приводится цепью от переднего конца коленчатого вала.

Насос через маслоприемник всасывает масло из масляного картера двигателя и с помощью полнопоточного масляного фильтра с фильтрующим элементом из пористой бумаги подает его в главную масляную магистраль в теле блока цилиндров. От главной магистрали каналы подвода масла отходят к коренным подшипникам коленчатого вала. К шатунным подшипникам масло подается через каналы в теле коленчатого вала. От главной масляной магистрали масло по вертикальному каналу подводится к подшипникам распределительных валов. Также масло подается под давлением к гидрокомпенсаторам зазоров в приводе клапанов.

Для смазки подшипников распределительных валов масло через радиальное отверстие в шейке одного из подшипников из вертикального канала поступает в центральные осевые каналы распределительных валов и по ним распределяется к остальным подшипникам.

Масло для смазывания кулачков распределительных валов поступает из центральных осевых каналов через радиальные отверстия в кулачках. Излишки масла из головки блока сливаются через вертикальные дренажные каналы в масляный картер.

Система охлаждения двигателя

Система охлаждения закрытого типа включает водяной насос с приводом от вспомогательного приводного ремня, радиатор, расширительный бачок, термостат, вентилятор радиатора с термовязкостной муфтой и радиатор отопителя, а также шланги и переключатели. При запуске холодного двигателя охлаждающая жидкость циркулирует вокруг блока цилиндров и головки блока цилиндров. Теплая охлаждающая жидкость поступает через радиатор отопителя к водяному насосу. Поскольку охлаждающая жидкость при нагреве расширяется, то повышается ее уровень в расширительном бачке. Поступление охлаждающей жидкости через радиатор закрыто, что обеспечивает закрытый термостат. Когда охлаждающая жидкость достигнет предопределенной температуры, термостат открывается и горячая охлаждающая жидкость проходит через шланг к радиатору, поскольку охлаждающая жидкость проходит через радиатор, происходит ее охлаждение потоком встречного воздуха. Термовязкостная муфта вентилятора радиатора включается в зависимости от температуры воздуха за радиатором. При достижении предопределенной температуры открывается клапан в муфте и термовязкостная муфта приводит в действие крыльчатку вентилятора. Когда температура охлаждающей жидкости находится в пределах от +92°С до +98°С термодатчик включает первую ступень вентилятора радиатора и вентилятор вращается с уменьшенным числом оборотов. При температуре охлаждающей жидкости от +99°С до +105°С термодатчик включает вентилятор радиатора на вторую ступень и вентилятор вращается с максимальным количеством оборотов.
Вентилятор с электрическим приводом может включаться и после выключения зажигания. Поэтому при проведении работ на горячем двигателе на время проведения работ необходимо отсоединить электрический разъем от двигателя вентилятора.

Радиатор с горизонтальным потоком жидкости, с трубчато-ленточной алюминиевой сердцевиной и пластмассовыми бачками. На автомобиле с автоматической коробкой передач в левый бачок устанавливают теплообменник для охлаждения рабочей жидкости коробки. В бачках выполнены подводящий и отводящий патрубки шлангов к водяной рубашке двигателя и патрубки шлангов, соединяющих радиатор с расширительным бачком.
Пробка расширительного бачка с впускным и выпускным клапанами. Выпускной клапан поддерживает повышенное давление в системе с целью повышения температуры кипения охлаждающей жидкости. Клапан открывается, когда давление становится выше 0,16 МПа (1,16 кгс/см2). При остывании двигателя давление в системе снижается и открывается впускной клапан.

Расширительный бачок служит для компенсации изменяющегося объема охлаждающей жидкости в зависимости от ее температуры. Он изготовлен из полупрозрачной пластмассы. На его стенки нанесены метки «MIN» и «MAX» для контроля уровня охлаждающей жидкости, а сверху расположена наливная горловина, закрытая пластмассовой пробкой.
Водяной насос центробежного типа обеспечивает принудительную циркуляцию жидкости в системе охлаждения, установлен на передней поверхности блока цилиндров и приводится во вращение поликлиновым ремнем от шкива коленчатого вала. В насосе установлены закрытые подшипники, не нуждающиеся в пополнении смазки. Насос ремонту не подлежит, поэтому при отказе (течь жидкости или повреждение подшипников) его заменяют в сборе.

Водораспределитель состоит из корпуса и двух термостатов с твердым термочувствительным наполнителем, которые поддерживают нормальную рабочую температуру охлаждающей жидкости и сокращают время прогрева двигателя. Термостаты установлены в водораспределителе, который закреплен на головке блока цилиндров. При температуре охлаждающей жидкости до 87 °С термостаты полностью закрыты и жидкость циркулирует по малому контуру, минуя радиатор, что ускоряет прогрев двигателя. При температуре 87 °С основной термостат начинает открываться, а при 102 °С открывается полностью, обеспечивая доступ охлаждающей жидкости в радиатор. Дополнительный термостат начинает открываться при температуре 102 °С, а при 103 °С открывается полностью, обеспечивая повышенную циркуляцию жидкости через радиатор.

Электровентилятор системы охлаждения (с пластмассовой семилопастной крыльчаткой) служит для дополнительного обдува радиатора воздухом на небольшой скорости движения автомобиля в основном в городских условиях или на горных дорогах, когда встречного потока воздуха недостаточно для охлаждения радиатора. Электровентилятор включается и выключается по сигналу электронного блока управления двигателем. Причем в зависимости от напряженности теплового режима и алгоритма работы кондиционера электровентилятор может вращаться с малой и большой скоростью. Изменение скоростного режима вентилятора обеспечивается блоком управления двигателем путем подключения дополнительного сопротивления. Электровентилятор в сборе с кожухом установлен на радиаторе системы охлаждения.

Система питания двигателя CFNA и CFNB

Состав системы питания:

Система воздухоподачи (воздушный фильтр, воздухоподводящий рукав и дроссельный узел);
-система подачи топлива (трубопроводы, шланги, топливная рампа с форсунками, топливный бак, топливный фильтр, модуль электрического топливного насоса);
-система улавливания паров топлива (соединительные трубопроводы, адсорбер, клапан продувки адсорбера).

Главная задача системы подачи топлива заключается в обеспечении подачи в двигатель нужного количества топлива на всех режимах работы. Двигатель оснащен электронной системой управления с распределенным впрыском топлива. В системе распределенного впрыска топлива форсунки осуществляют функцию смесеобразования дозированный впрыск топлива во впускную трубу. Постоянное дозирование подачи топливовоздушной смеси в цилиндры двигателя осуществляется через дроссельный узел путем поступления необходимого количества воздуха. Это обеспечивает оптимальное соотношение состава горючей смеси в каждый конкретный момент работы двигателя, а также позволяет получить максимальную мощность при минимально возможном расходе топлива и низкой токсичности отработавших газов. Управляет системой впрыска топлива и системой зажигания электронный блок управления двигателем (ЭБУ, контроллер), непрерывно контролирующий с помощью соответствующих датчиков нагрузку и тепловое состояние двигателя, скорость движения автомобиля, оптимальность процесса сгорания в цилиндрах.

Главной целью впрыска автомобиля Volkswagen Polo седан является одновременное срабатывание форсунок в соответствии с фазами газораспределения: блок управления двигателем получает информацию от датчика фазы. Контроллер включает форсунки поочередно, через 720° поворота коленчатого вала. Однако на режимах пуска и динамических режимах работы двигателя используется асинхронный метод подачи топлива без синхронизации с вращением коленчатого вала.

Датчик концентрации кислорода в отработавших газах (лямбдазонд) – основной датчик для системы впрыска топлива. Выпускной коллектор объединен с каталитическим нейтрализатором отработавших газов (катколлектор). Управляющий датчик концентрации кислорода, находящийся в катколлекторе, совместно с блоком управления двигателем и форсунками образует контур управления составом топливовоздушной смеси, которая поступает в двигатель. Количество несгоревшего кислорода в отработавших газах определяется блоком управления двигателем по сигналам датчика. Соответственно оценивается качество состава топливовоздушной смеси, поступающей в цилиндры двигателя в каждый момент времени. Если происходит отклонение состава от оптимального 1:14 (соответственно топливо и воздух), который обеспечивает максимально эффективную работу каталитических нейтрализаторов отработавших газов, с помощью форсунок блок управления изменяет состав смеси. Поскольку датчик концентрации кислорода включен в цепь обратной связи блока управления двигателем, контур управления составом топливовоздушной смеси является замкнутым. Кроме управляющего датчика в приемной трубе системы выпуска отработавших газов установлен еще и диагностический датчик концентрации кислорода. Эффективность работы системы управления двигателем определяется по составу прошедших через нейтрализатор газов. Если блок управления двигателем по информации, полученной от диагностического датчика концентрации кислорода, фиксирует превышение нормы токсичности отработавших газов, не устраняемое тарировкой системы управления, то он включает в комбинации приборов сигнальную лампу неисправности двигателя и заносит в память код ошибки для последующей диагностики.

Топливный бак отформован из специальной пластмассы . Он установлен под полом кузова в его задней части и прикреплен двумя стальными хомутами. Для предотвращения попадания паров топлива в атмосферу бак соединен трубопроводом с адсорбером системы улавливания паров топлива. Во фланцевое отверстие в верхней части бака устанавливают топливный модуль, в левой части выполнены патрубки для присоединения наливной трубы и шланга вентиляции. Из топливного модуля, включающего в себя насос, фильтр грубой очистки топлива и регулятор давления, топливо через выносной топливный фильтр подается в топливную рампу, закрепленную на головке блока цилиндров. Из топливной рампы топливо впрыскивается форсунками во впускную трубу.

Топливопроводы системы питания комбинированные в виде соединенных между собой трубопроводов и резиновых шлангов Топливный модуль включает в себя электрический насос, топливный фильтр, регулятор давления топлива и датчик указателя уровня топлива.

Топливный модуль обеспечивает подачу топлива и установлен в топливном баке, что снижает вероятность образования паровых пробок, так как топливо подается под давлением, а не за счет разрежения. Кроме этого улучшается смазывание и охлаждение деталей топливного насоса.

Топливный насос погружной, с электроприводом, роторного типа установлен в топливном модуле, расположенном в топливном баке. Топливный насос подает топливо в топливную рампу из топливного бака через топливную магистраль под давлением (номинальное давление топлива в режиме холостого хода примерно 270-310 кПа).
Топливная рампа, представляющая собой пустотелую трубчатую деталь с отверстиями для установки форсунок, служит для подачи топлива к форсункам и закреплена на впускной трубе. Форсунки уплотнены в гнездах резиновыми кольцами. Рампа с форсунками в сборе вставлена хвостовиками форсунок в отверстия впускной трубы и закреплена двумя болтами.
Форсунки своими распылителями входят в отверстия впускной трубы. В отверстиях впускной трубы форсунки уплотнены резиновыми уплотнительными кольцами. Форсунка предназначена для дозированного впрыска топлива в цилиндр двигателя и представляет собой высокоточный электромеханический клапан, в котором игла запорного клапана прижата к седлу пружиной. При подаче электрического импульса от блока управления на обмотку электромагнита игла поднимается и открывает отверстие распылителя топливо подается во впускную трубу. Количество топлива, впрыскиваемого форсункой, зависит от длительности электрического импульса.


Двигатель Фольксваген Поло седан имеет рабочий объем 1,6 литра и мощность 105 лошадиных сил. Но в этом году появился еще один двигатель Volkswagen Polo sedan того же объема 1,6 литра, но мощностью всего 85 лошадей. Этот двигатель ставят на новую комплектацию Фольксваген Поло седан “Style”. Сегодня расскажем об этих моторах подробнее.

Основной двигатель Поло седан мощностью 105 л.с., это 16 клапанный 4-ёх цилиндровый бензиновый мотор с распределенным впрыском топлива мощностью 77кВт . Крутящий момент составляет 153 Нм. Силовой агрегат расположен поперечно и имеет заводское наименование CFNA, это классический DOHC, с двумя распредвалами сверху.

В приводе ГРМ Поло седан используется цепь , вместо ремня газораспределительного механизма, как на многих других моторах. Цепной механизм в ГРМ надежнее и практичнее, чем ремень. Кроме того, ремень ГРМ нужно менять каждые 40-50 тысяч пробега, а если на него попало масло то выйдет из строя моментально. А цепь обычно работает намного дольше. Подробные технические характеристики двигателя Фольксваген Поло седан смотрим ниже.

Двигатель Фольксваген Поло седан 105 л.с. 16-клапанов

  • Рабочий объем – 1595 см3
  • Мощность – 105 л.с. при 5600 оборотах в минуту
  • Крутящий момент – 153 Нм при 3800 оборотах в минуту
  • Степень сжатия – 10,5:1
  • Диаметр цилиндра – 76,5 мм
  • Ход поршня – 86,9 мм
  • Расход топлива в городском цикле – 8,7 (5МКПП) 9,8 (6АКПП) литра
  • Расход топлива в загородном цикле – 5,1 (5МКПП) 5,4 (6АКПП) литра
  • Расход топлива в смешанном цикле – 6,4 (5МКПП) 7,0 (6АКПП) литра
  • Разгон до первой сотни – 10,5 (5МКПП) 12,1 (6АКПП) секунд
  • Максимальная скорость – 190 (5МКПП) 187 (6АКПП) километров в час

Сведений о новом двигателе Поло седан мощностью в 85 лошадей пока немного, поскольку появился он на этом автомобиле совсем недавно. Сочетается данный мотор только с 5 ступенчатой механикой. Динамические показатели заметно хуже, чем у основного мотора Volkswagen Polo sedan. Но кое какие характеристики уже известны. Модель двигателя имеет заводское обозначение CFNB, при тех же 16 клапанах у этой модификации двигателя отсутствует бесступенчатая система смена фаз газораспределения на впускном валу. Это и есть основное между моторами, данный двигатель так же имеет цепной привод ГРМ .

Газораспределительный механизм с верхним расположением распредвалов, мощность 63 кВт , распределенный впрыск. Собственно моторы различаются в основном только наличием или отсутствием исполнительного механизма системы изменения фаз ГРМ. Отсюда и разница в мощности. Кстати, можно без опаски использовать 92 бензин, этот мотор готов даже к такому топливу. Подробные технические характеристики ниже.

Двигатель Фольксваген Поло седан 85 л.с.

  • Рабочий объем – 1598 см3
  • Мощность – 85 л.с. при 3750 оборотах в минуту
  • Крутящий момент – 144 Нм при 3750 оборотах в минуту
  • Диаметр цилиндра – 76 мм
  • Ход поршня – 86,9 мм
  • Расход топлива в городском цикле – 8,7 (5МКПП) литра
  • Расход топлива в загородном цикле – 5,1 (5МКПП) литра
  • Расход топлива в смешанном цикле – 6,4 (5МКПП) литра
  • Разгон до первой сотни – 11,9 (5МКПП) секунд
  • Максимальная скорость – 179 (5МКПП) километров в час

Почему производитель Volkswagen Polo sedan использует устаревший мотор, да еще и маломощный? Ответ скорее всего кроется в финансовой плоскости, двигатель Поло седан мощностью в 85 лошадей гораздо дешевле в производстве. Собственно и общая стоимость автомобиля может снижаться, весьма актуально на фоне падающего рынка новых автомобилей в нашей стране.

Стоит отметить, что с осени 2015 года началось производство нового мотора для Поло седан в Калуге. На все бюджетные седаны 2016 модельного года устанавливают более современные 1.6 литровые движки с ременным приводом ГРМ мощностью 90 и 110 л.с.

Двигатель (вид спереди по направлению движения автомобиля): 1 - масляный фильтр; 2 - крышка маслозаливной горловины; 3 - указатель уровня масла; 4 - датчик положения распределительного вала; 5 - катушки зажигания; 6 - дроссельный узел; 7 - корпус распределительных валов; 8 - головка блока цилиндров; 9 - распределитель охлаждающей жидкости; 10 - датчик температуры охлаждающей жидкости; 11 - датчик сигнализатора недостаточного давления масла; 12 - крышка дополнительного термостата; 13 - управляющий датчик концентрации кислорода; 14 - блок цилиндров; 15 - маховик; 16 - катколлектор; 17 - поддон картера; 18 - компрессор кондиционера; 19 - ремень привода вспомогательных агрегатов; 20 - генератор.

Двигатель (вид сзади по направлению движения автомобиля): 1 - крышка основного термостата; 2 - датчик температуры охлаждающей жидкости; 3 - распределитель охлаждающей жидкости; 4 - дроссельный узел; 5 - рым; 6 - катушки зажигания; 7 - датчик положения распределительного вала; 8 - указатель уровня масла; 9 - топливная рампа; 10 - корпус распределительных валов; 11 - крышка маслозаливной горловины; 12 - клапан системы вентиляции картера; 13 - головка блока цилиндров; 14 - ремень привода вспомогательных агрегатов; 15 -насос охлаждающей жидкости; 16 - шкив привода вспомогательных агрегатов; 17 - крышка привода ГРМ; 18 - труба подвода охлаждающей жидкости к насосу; 19 - блок цилиндров; 20 - поддон картера; 21 - пробка сливного отверстия; 22 - впускной трубопровод; 23 - клапан продувки адсорбера; 24 - маховик.

Двигатель (заводское обозначение CFNA) бензиновый, четырехтактный, четырехцилиндровый, рядный, шестнадцатиклапанный, с двумя распределительными валами. Расположен в моторном отсеке поперечно. Порядок работы цилиндров: 1-3-4-2, отсчет - от шкива привода вспомогательных агрегатов. Система питания - фазированный распределенный впрыск топлива (нормы токсичности Евро-4). Двигатель с коробкой передач и сцеплением образуют силовой агрегат - единый блок, закрепленный в моторном отсеке на трех эластичных резинометаллических опорах. Правая опора (гидравлическая) крепится к кронштейну, прикрепленному к крышке привода ГРМ, а левая и задняя опоры - к кронштейнам на картере коробки передач.

Двигатель (вид справа по направлению движения автомобиля): 1 - впускной трубопровод; 2 - клапан продувки адсорбера; 3 - дроссельный узел; 4 - клапан системы вентиляции картера; 5 - датчик положения распределительного вала; 6 - крышка маслозаливной горловины; 7 - катушка зажигания; 8 - указатель уровня масла; 9 - корпус распределительных валов; 10 - крышка привода ГРМ; 11 - масляный фильтр; 12 - генератор; 13 - опорный ролик ремня привода вспомогательных агрегатов; 14 - натяжной ролик ремня привода вспомогательных агрегатов; 15 - шкив электромагнитной муфты компрессора кондиционера; 16 - шкив привода вспомогательных агрегатов; 17 - поддон картера; 18 - ремень привода вспомогательных агрегатов; 19 - шкив насоса охлаждающей жидкости.

Справа на двигателе (по направлению движения автомобиля) расположены:
цепные приводы газораспределительного механизма и масляного насоса (под крышкой привода ГРМ); привод насоса охлаждающей жидкости, генератора и компрессора кондиционера (поликлиновым ремнем). Слева расположены: распределитель охлаждающей жидкости с двумя термостатами, датчик температуры охлаждающей жидкости, маховик. Спереди: катколлектор с управляющим датчиком концентрации кислорода, генератор, компрессор кондиционера, масляный фильтр, датчик сигнализатора недостаточного давления масла.

Сзади: впускной трубопровод с дроссельным узлом, датчик абсолютного давления и температуры воздуха на впуске, клапан системы вентиляции картера, топливная рампа с форсунками, датчик положения коленчатого вала, датчик детонации; труба подвода охлаждающей жидкости к насосу, клапан продувки адсорбера. Сверху: маслозаливная горловина, катушки и свечи зажигания, датчик положения распределительного вала, указатель уровня масла. Блок цилиндров отлит из алюминиевого сплава, цилиндры расточены в блоке. В нижней части блока цилиндров расположены опоры коленчатого вала - пять постелей коренных подшипников вала со съемными крышками, которые крепятся к блоку специальными болтами. Отверстия в блоке цилиндров под коренные подшипники (вкладыши) коленчатого вала обрабатываются в сборе с крышками, поэтому крышки не взаимозаменяемы. На торцевых поверхностях средней (третьей) опоры имеются гнезда для двух упорных полуколец, препятствующих осевому перемещению коленчатого вала. Коленчатый вал - из высокопрочного чугуна, с пятью коренными и четырьмя шатунными шейками. Вал снабжен восемью противовесами, выполненными на продолжении «щек». Противовесы предназначены для уравновешивания сил и моментов инерции, возникающих при движении кривошипно-шатунного механизма во время работы двигателя. Вкладыши коренных и шатунных подшипников коленчатого вала стальные, тонкостенные, с антифрикционным покрытием. Коренные и шатунные шейки коленчатого вала соединяют каналы, просверленные в теле вала, которые служат для подвода масла от коренных к шатунным подшипникам вала. На переднем конце (носке) коленчатого вала установлена звездочка привода газораспределительного механизма (ГРМ) и масляного насоса, а также шкив привода вспомогательных агрегатов. На автомобиле с механической коробкой передач к фланцу коленчатого вала шестью болтами прикреплен маховик, который облегчает пуск двигателя, обеспечивая вывод его поршней из мертвых точек и более равномерное вращение коленчатого вала в режиме работы двигателя на холостом ходу. Маховик отлит из чугуна и имеет напрессованный стальной зубчатый венец для пуска двигателя стартером. На автомобиле с автоматической коробкой передач к фланцу коленчатого вала прикреплен стальной ведущий диск гидротрансформатора с венцом для пуска двигателя стартером. Шатуны - кованые стальные, двутаврового сечения. Своими нижними разъемными головками шатуны соединены через вкладыши с шатунными шейками коленчатого вала, а верхними головками - через поршневые пальцы с поршнями. Крышка шатуна крепится к телу шатуна двумя специальными болтами.

Двигатель (вид слева по направлению движения автомобиля): 1 - катколлектор; 2 - управляющий датчик концентрации кислорода; 3 - головка блока цилиндров; 4 - датчик недостаточного давления масла; 5 - масляный фильтр; 6 - корпус распределительных валов; 7 - катушка зажигания; 8 - крышка маслозаливной горловины; 9 - клапан системы вентиляции картера; 10 - датчик температуры охлаждающей жидкости; 11 - топливная рампа; 12 - распределитель охлаждающей жидкости; 13 - блок управления дроссельным узлом; 14 - впускной трубопровод; 15 - блок цилиндров; 16 - маховик.

Поршни выполнены из алюминиевого сплава. В верхней части поршня проточены три канавки под поршневые кольца. Два верхних поршневых кольца - компрессионные, а нижнее - маслосъемное. Компрессионные кольца препятствуют прорыву газов из цилиндра в картер двигателя и способствуют отводу тепла от поршня к цилиндру. Маслосъемное кольцо удаляет излишки масла со стенок цилиндра при движении поршня.

Поршневые пальцы стальные, трубчатого сечения, плавающего типа (свободно вращаются в бобышках поршней и верхних головках шатунов). От осевого смещения пальцы зафиксированы стопорными пружинными кольцами, расположенными в проточках бобышек поршней.

Головка блока цилиндров отлита из алюминиевого сплава, общая для всех четырех цилиндров. Она центрируется на блоке двумя втулками и крепится десятью болтами. Между блоком и головкой блока цилиндров установлена металлическая прокладка. На противоположных сторонах головки блока цилиндров расположены окна впускных и выпускных каналов. Свечи зажигания установлены по центру каждой камеры сгорания. Клапаны газораспределительного механизма в головке блока цилиндров расположены в два ряда, V-образно, по два впускных и два выпускных клапана на каждый цилиндр. Клапаны стальные, выпускные - с тарелкой из жаропрочной стали и наплавленной фаской. Диаметр тарелки впускного клапана больше, чем выпускного. В головку блока цилиндров запрессованы седла и направляющие втулки клапанов. Сверху на направляющие втулки клапанов надеты маслосъемные колпачки, изготовленные из маслостой-кой резины. Клапан закрывается под действием пружины. Нижним концом она опирается на шайбу, а верхним - на тарелку, удерживаемую двумя сухарями. Сложенные вместе сухари имеют форму усеченного конуса, а на их внутренней поверхности выполнены буртики, входящие в проточки на стержне клапана.

К верхней плоскости головки блока цилиндров винтами крепится корпус из алюминиевого сплава, в котором установлены два распределительных вала. Привод распределительных валов - пластинчатой цепью от звездочки коленчатого вала. Гидромеханическое натяжное устройство автоматически обеспечивает требуемое натяжение цепи в процессе эксплуатации. Каждый вал вращается в трех неразъемных опорах (подшипниках скольжения) корпуса распределительных валов. Один вал приводит впускные клапаны газораспределительного механизма, а другой - выпускные. На каждом валу выполнены восемь кулачков - соседняя пара кулачков одновременно управляет двумя клапанами (впускными или выпускными) каждого цилиндра. Клапаны приводятся в действие кулачками распределительного вала через рычаги клапанов. Для увеличения срока службы распределительного вала и рычагов клапанов кулачок вала воздействует на рычаг через ролик, вращающийся на оси рычага. Одним концом рычаг опирается на торец стержня клапана, а другим на шаровидную головку гидроопоры рычага, установленную в гнезде головки блока цилиндров. Внутри корпуса гидроопоры установлен гидрокомпенсатор с обратным шариковым клапаном. Масло внутрь гидроопоры поступает через отверстие в ее корпусе из магистрали в головке блока цилиндров. Гидроопора автоматически обеспечивает беззазорный контакт кулачка распределительного вала с роликом рычага клапана, компенсируя износ кулачка, рычага, торца стержня клапана, фасок седла и тарелки клапана. Смазка двигателя - комбинированная. Под давлением масло подается к коренным и шатунным подшипникам коленчатого вала, подшипникам распределительных валов, гидроопорам рычагов клапанов, натяжителю цепи. Давление в системе создает масляный насос с шестернями внутреннего зацепления и редукционным клапаном. Корпус масляного насоса прикреплен к нижней плоскости блока цилиндров и закрыт поддоном картера. Ведущая шестерня насоса приводится цепью от звездочки, расположенной на носке коленчатого вала. Насос через маслоприемник забирает масло из поддона картера и через полнопоточный масляный фильтр подает его в главную магистраль блока цилиндров. От главной масляной магистрали через каналы в блоке цилиндров масло поступает к коренным подшипникам коленчатого вала. От коренных подшипников к шатунным подшипникам масло подается через каналы, выполненные в теле коленчатого вала. От главной масляной магистрали отходит вертикальный канал в блоке цилиндров для подвода масла к гидроопорам клапанов в головке блока цилиндров и подшипникам распределительных валов в корпусе распределительных валов. Излишки масла сливаются в поддон картера из корпуса распределительных валов и головки блока цилиндров через специальные дренажные каналы. Разбрызгиванием масло подается на стенки цилиндров, поршни, поршневые кольца и пальцы, кулачкам распределительных валов, рычагам клапанов и цепи.

Расположение вакуумного клапана 1 и маслоотделителя 2 контура холостого хода системы вентиляции картера на крышке 3 привода ГРМ

Система вентиляции картера двигателя - принудительная, закрытого типа. В зависимости от режимов работы двигателя (частичная или полная нагрузка, холостой ход) картерные газы попадают во впускной тракт двигателя по шлангам двух контуров. При работе двигателя на холостом ходу и на режимах малых нагрузок, когда разрежение во впускном трубопроводе велико, картерные газы отбираются из-под крышки привода ГРМ и подводятся к впускному трубопроводу - в пространство за дроссельной заслонкой. В полости крышки привода ГРМ расположен маслоотделитель, проходя через который газы очищаются от частиц масла. Затем, газы по каналу в крышке привода ГРМ поступают к вакуумному клапану и далее по трубке клапана - в подогреватель системы вентиляции картера, соединенный с впускным трубопроводом. В зависимости от разрежения во впускном трубопроводе клапан регулирует поток картерных газов, поступающий в цилиндры двигателя.

Подогреватель системы вентиляции картера: 1 - патрубок для соединения с трубкой вакуумного клапана; 2 - патрубок для соединения с впускным трубопроводом; 3 - штуцеры подвода и отвода охлаждающей жидкости.

На режимах полных нагрузок, когда разрежение во впускном трубопроводе снижается, картерные газы из корпуса распределительных валов попадают в цилиндры двигателя через шланг, соединенный со штуцером корпуса, обратный клапан, воздушный фильтр, дроссельный узел и впускной трубопровод.

Элементы контура полной мощности системы вентиляции картера: 1 - корпус распределительных валов; 2 - воздушный фильтр; 3 - шланг; 4 - обратный клапан.

Для выполнения операций по ремонту двигателя (таких, как снятие цепи привода ГРМ и корпуса привода распределительных валов), связанных с последующей регулировкой фаз газораспределения, необходимо иметь специальный инструмент и приспособления. Конструктивно двигатель выполнен так, что ведущая звездочка цепи привода ГРМ на коленчатом валу и ведомые звездочки на распределительных валах установлены без натяга и не зафиксированы шпонками - крепятся только за счет сил трения, возникающих между торцевыми поверхностями деталей при стягивании болтами. Поэтому, при установке поршня 1-го цилиндра в положение ВМТ такта сжатия требуется индикатор часового типа со специальным переходником (допустимое отклонение от ВМТ ± 0,01 мм) и приспособление для фиксации распределительных валов. В этой связи рекомендуем все операции по ремонту двигателя, связанные с регулировкой фаз газораспределения, выполнять на специализированном сервисе, располагающим необходимым оборудованием. Системы управления двигателем, питания, охлаждения и выпуска отработавших газов описаны в соответствующих главах.

Автомобиль Volkswagen Polo имеет широкую линейку двигателей, устанавливаемых в подкапотное пространство.

В нее входят трехцилиндровые и четырехцилиндровые моторы с различным объемом и широким разбросом мощности.

Главным, что объединяет все силовые установки Фольксваген Поло, является отсутствие серьезных конструктивных недостатков, высокая надежность и большая долговечность всех двигателей.

Моторы соответствуют экологическим требования и характеризуются низким расходом топлива.

Трехцилиндровые двигатели, которыми комплектуется Фольксваген Поло

На автомобиль Фольксваген Поло устанавливаются преимущественно бензиновые двигатели. Существуют варианты и с дизельным мотором. Они не нашли широкого распространения на отечественном рынке. Объем устанавливаемых трехцилиндровых силовых агрегатов колеблется от 1.0 до 1.4 литра.

Самым экономичным бензиновым мотором является 1,0 TSI Blue Motion. Не смотря на литровый объем, он выдает приличные характеристики. Его мощность 95 лошадиных сил.

При этом двигатель развивает крутящий момент в 160 Нм. Производитель модернизировал устройство силового агрегата, в результате чего под капотом Фольксваген Поло удалось достичь 110 лошадиных сил и 200 Нм крутящего момента. Данные показатели являются весьма достойными для трехцилиндрового мотора.

Одним из небольших двигателей, устанавливаемым на Volkswagen Polo является рядный трехцилиндровый EA 111. Это чешский мотор, проектирование которого началось в середине 70-х годов. Двигатель перекочевал с на Audi 50, поэтому практически лишен детских болезней. Он имеет рабочий объем 1.2 литра и выдает 70 лошадиных сил. Фольксваген Поло комплектовался данным мотором до 2014 года. Новые автомобили получили более мощные ДВС.

В 2009- 2013 годах широкую популярность получил трехцилиндровый турбо дизель 1.2 TDI BlueMotion. Мотор расходовал до 3.4 литров солярки на 100 километров пути. В последующем двигатель был заменен на более мощный 1,4 л TDI BlueMotion. В 2016 году была произведена модернизация силового агрегата, позволяющая ему оставаться конкурентоспособным на сегодняшний день.

Четырехцилиндровые силовые агрегаты Volkswagen Polo

Большинство машин Фольксваген Поло в кузовах седан и хэтчбек комплектуются четырехлитровыми силовыми агрегатами с двигателями от 1.1 до 1.9 литра. Наибольшую популярность получили двигатели на 1.4 и 1.6 литра.

Более дешевым вариантом являются автомобили Volkswagen Polo с двигателями на 1.6 литра. Они обладают мощностью 90 л с, 105 л с и 110 л с. Силовые установки имеют положительные отзывы от автовладельцев. Они надежны и долговечны. В 2017 году была произведена последняя модернизация конструкции. Наиболее востребованным на сегодняшний день является 1.6-литровый двигатель CFNA.

В отличии от отечественного рынка, за его пределами популярность набирает мотор 1.4 TSI. Он является наиболее динамичным. Эксплуатация данных силовых установок сопровождается необходимостью использовать только высококачественное топливо и синтетическое моторное масло.

Основные технические характеристики

Фольксваген Поло имеет широкую линейку применяемых двигателей. Разброс объемов потребляемого топлива на 100 километров пути составляет от 3.4 до 12 литров. В реальных условиях многие автовладельцы отмечают повышение расхода горючего вплоть до 15-17 литров. В большинстве случае это связано с тяжелыми дорожными условиями или наличием неисправностей в автомобиле.

Расход топлива согласно техническим характеристикам для наиболее популярных двигателей в комплектации с АКПП и МКПП приведено в таблице ниже.

Наилучшие показатели разгона имеют автомобили Фольксваген Поло, у которых под капотом находятся силовые установки на 1.4 литра. Более подробно данная характеристика для популярных моделей Volkswagen Polo приведена в таблице ниже.

Таблица — Разгон до 100 км/час Фольксваген Поло

Модель Разгон до 10 км/час, секунд
1.4 TSI MT 9
1.4 TSI DSG 9
1.2 TSI DSG Comfortline 09.07.2018
1.6 MPI MT Comfortline 10.04.2018
1.6 MPI MT Allstar 11.04.2018
1.6 MPI AT Highline 11.07.2018
1.6 MPI MT Conceptline 11.09.2018
1.6 MPI AT Comfortline 12.01.2018
1.8 GTI Cup Edition 07.05.2018
1.8 GTI 08.02.2018
1.9 TDI Trendline 09.02.2018
Volkswagen Polo 1.1 16
Volkswagen Polo 1.0 19

Ресурс двигателей

Многие автолюбители с опаской относятся к трехцилиндровым двигателям. Считается, что их моторесурс слишком мал. Двигатели с тремя цилиндрами, устанавливаемые на Фольксваген Поло, способны преодолеть 300 000 километров до капитального ремонта. Данный показатель весьма впечатляет и развенчивает мнение о низкой долговечности трехцилиндровых силовых установок.

Из всей линейки моторов наиболее надежным и долговечным является агрегат на 1.6 литра.

Он является наименее чувствительным к качеству топлива и соблюдению технического обслуживания. По этой причине Volkswagen Polo с мотором на 1.6 обрел наибольшую популярность на отечественном рынке. Ресурс двигателя составляет 250-400 тыс. км до капитального ремонта. Согласно отзывам автовладельцев, наибольшей надежностью обладают моторы автомобилей 2011 — 2012 года выпуска.

Наименьшей надежностью характеризуются силовые агрегаты 1.4 TSI. Они работают с высокой тепловой нагрузкой. Использование низкосортных расходников или нарушение интервалов технического обслуживания часто приводят к появлению задиров на цилиндрах. При должном отношении к двигателю его ресурс составляет порядка 230-250 тыс. км.

Типичные проблемы силовых агрегатов

Наиболее частой неполадкой, характерной для всей линейки двигателей, является наличие посторонних стуков во время работы мотора. Причиной этого является конструктивная особенность поршней и зажатость впускного коллектора. Появляется стук после 20 тыс. км пробега на холодном двигателе. Постепенно посторонние звуки начинают присутствовать и при работе прогретого мотора.

Обновленный двигатель на 1.6 литра и 110 лошадиных сил получил ремень ГРМ и пластиковый впускной коллектор. Это принесло недостатков мотору. Многие автовладельцы жалуются на появление трещин на коллекторе и то, что двигатель гнет клапана при обрыве ремня. Цепной привод 105-сильного агрегата в разы надежнее.

Наиболее частыми поломками силовой установки, с которыми стыкаются автовладельцы Volkswagen Polo являются:

  • повреждение датчиков;
  • трещины в опорах силового агрегата;
  • залегание поршневых колец;
  • повышение давления картерных газов;
  • клапанная крышка потеет.

Целесообразность ремонта и замены на контрактный мотор

Когда силовая установка полностью исчерпывает свой ресурс перед автовладельцем предстает множество вариантов оживить свой автомобиль. Некоторыми из них являются:

  • поверхностный ремонт мотора;
  • капитальный ремонт силовой установки;
  • приобретение контрактного мотора;
  • покупка двигателя с отечественных авторазборок.

В результате поверхностного ремонта мотора устраняются неполадки мешающие работоспособности двигателя. При этом поломки происходят с регулярной периодичностью, так как большинство элементов выработали свой ресурс.

Стоимость такого ремонта составляет не более 10 000 рублей. Данный вид восстановления работоспособности рекомендуется только в случае ближайшей продажи машины либо в случае нерегулярного пользования ею.

Капитальный ремонт позволяет восстановить до 70-85% ресурса нового агрегата. Его рекомендуется проводить в случае отсутствия сложноустранимых последствий эксплуатации силовой установки. Стоимость капремонта составляет порядка 30-50 тысяч рублей.

Покупка контрактного двигателя с зарубежных разборок является одним из радикальных способов решения проблем с исчерпанием ресурса силовой установкой. Цена такого мотора составляет от 20 до 60 тысяч рублей. Остаточный ресурс при покупке двигателя оценить достаточно сложно. Стоит отметить, что среди контрактных силовых установок достаточно много агрегатов, способных преодолеть 70-120 тыс. км без серьезных финансовых вложений на ремонт. На фото ниже приведен типичный мотор с зарубежных авторазборок.

Приобретение мотора на отечественных авторазборках достаточно рисковое занятие. В большинстве случаев реальный пробег узнать невозможно, так как он неоднократно скручивается, проходя руки посредников. Поэтому приобретать бывший в употреблении двигатель с отечественных авторазборок можно только в случае личного осмотра с знакомым автомехаником или мотористом. Стоимость такого агрегата составляет 15-35 тыс. рублей.

Рекомендации по выбору автомобиля Фольксваген Поло с различными силовыми установками

Согласно отзывам автовладельцев, лучше всего приобрести Фольксваген Поло с бензиновым двигателем на 1.6 литра. Наиболее современный двигатель имеет 110 лошадиных сил. Этого вполне достаточно для комфортного движения как в плотном дорожном потоке, так и по трассе. Мотор не прихотлив и обладает хорошим ресурсом.

Если у автовладельца приоритетной является динамика машины, то следует присмотреться к бензиновому мотору 1.4 TSI или дизелю на 1.9 литра. Они обладают отменными техническими характеристиками и способны обеспечить спортивный стиль вождения для водителя.

Для желающих сэкономить на топливе существуют трехцилиндровые версии. При этом следует учитывать, что от силовой установки на 1.0-1.2 литра ожидать хорошей динамики не стоит. Несмотря на это, небольшая мощность двигатель не доставит проблем при движении в городском потоке.

Toyota Land Cruiser 200 выпускается с 2007 года. Это настоящий старожила рынка. И дело здесь не в том, что он уже 12 лет на конвейере, а в том, что он является при этом лидером сегмента, ведь продажи с каждым годом только растут.

И все это благодаря тому, что брутальный японский внедорожник постоянно улучшается и модернизируется, а также пополняется новыми версиями. И одна из последних Land Cruiser 200 TRD. Чем интересен данный автомобиль? Может быть это новый конкурент GLS 63 AMG или X7M?

Что такое TRD? TRD расшифровывается как Toyota Racing Development. Это специальное подразделение бренда, которое занимается доводкой автомобилей. Это как AMG или же M Perfomance. Но есть некоторые отличия.

Дизайн прежде всего. Какие только обвесы не устанавливали на Land Cruiser 200. Сначала это были проекты от знаменитых тюнинг ателье, но сейчас в Toyota периодически выпускают новые версии самостоятельно. И последняя версия является Land Cruiser 200 TRD.

Прежде всего автомобиль отличается от гражданской версии спортивным обвесом. Тут и спереди бампер очень массивный, и в задней части свесы большие. Все это ухудшает проходимость. Все остальные детали кузова точно такие же, как и у гражданских версий. По стилю обвес напоминает версию Executive Lounge, но имеет более острые грани и шильдики TRD. На пятой двери и решетки радиатора красуется логотип TRD.

Интерьер. В салоне изменилась только кнопка запуска двигателя, больше ничего здесь нового нет. Единственное, что стало немного больше элементов, изготовленных из натуральной кожи. А в остальном плане все идентично стандартным версиям. Внутри японского рамного внедорожника традиционно просторно, комфортно и уютно. Эргономика на высшем уровне. Разве что уровень мультимедиа расстраивает. За такие деньги можно было сделать ее лучше. Но зато здесь есть камеры кругового обзора, поэтому обзорность здесь идеальная. А посадка за рулем высока из-за присутствия рамы.

Двигатель и ездовые качества. В спецверсии менять ничего не стали. Автомобиль оснащается теми же моторами: 4,5 литра дизельный, мощностью 249 л.с., 4,6 литров бензиновый, мощностью 309 л.с. И надо сказать, что едет автомобиль очень бодро.

Сравнивать этот внедорожник с рамой и задним неразрезным мостом с Mercedes-Benz или BMW просто бессмысленно. Но есть одно но. Для версии TRD по умолчанию автомобиль оснащается адаптивной подвеской. Также можно установить величину дорожного просвета. Это очень удобно. Стоить отметить только один минус всех моторов Land Cruiser 200. Они очень прожорливы. Если ездить на автомобиле с дизельным мотором, то можно без всяких проблем выйти на расход топлива в 17-19 литров дизеля на 100 километров.

Езда по бездорожью. Вот тут внедорожник проявляет себя во всей красе. Есть и гидропневматическая подвеска, и система KDSS, и Crawl Control. Еще можно заблокировать задний мост. Особенно на бездорожье помогают камеры кругового обзора. А для большей безопасности можно отключить подушки безопасности. На бездорожье это необходимо. В этой среди Land Cruiser 200 лучший. И это знают все.

Итог. Новая версия Toyota Land Cruiser 200 TRD является отличным дополнением для тех, кто любит динамичную езду и красивый внешний вид. Автомобиль в таком исполнении стоит порядка 6,5 млн рублей. И это приемлемая цена для такого надежного, рамного и просторного автомобиля.